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Abstract
Animal models of Parkinson’s disease (PD) are essential to investigate pathogenic pathways at

the whole-organism level. Moreover, they are necessary for a preclinical investigation of po-

tential new therapies. Different pathological features of PD can be induced in a variety of in-

vertebrate and vertebrate species using toxins, drugs, or genetic perturbations. Each model has

a particular utility and range of applicability. Invertebrate PD models are particularly useful

for high throughput-screening applications, whereas mammalian models are needed to explore

complex motor and non-motor features of the human disease. Here, we provide a comprehen-

sive review and critical appraisal of the most commonly usedmammalianmodels of PD, which

are produced in rats andmice. A substantial loss of nigrostriatal dopamine neurons is necessary

for the animal to exhibit a hypokinetic motor phenotype responsive to dopaminergic agents,

thus resembling clinical PD. This level of dopaminergic neurodegeneration can be induced

using specific neurotoxins, environmental toxicants, or proteasome inhibitors. Alternatively,

nigrostriatal dopamine degeneration can be induced via overexpression of α-synuclein using

viral vectors or transgenic techniques. In addition, protein aggregation pathology can be trig-

gered by inoculating preformed fibrils of α-synuclein in the substantia nigra or the striatum.

Thanks to the conceptual and technical progress made in the past few years a vast repertoire of

well-characterized animal models are currently available to address different aspects of PD in

the laboratory.
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1 Introduction
Research on animal models of neurological disease is often questioned on ethical

grounds (LaFollette and Shanks, 1996), conceptual grounds (Diederich et al.,

2019; Drummond and Wisniewski, 2017; Gomez-Marin and Ghazanfar, 2019), or

pragmatic grounds. On a pragmatic level, it is sometimes argued that studies in an-

imal models are unable to predict the outcome of new treatments for human disease

(Pound and Ritskes-Hoitinga, 2018), although it is often pointed out that clinical trial

failure does not necessarily depend on the intrinsic limitations of animal models

(Bespalov et al., 2016; van der Worp et al., 2010). In addition to these general con-

siderations, the recent availability of disease models in patient-derived cells (Caiazza

et al., 2020) is stimulating a debate around the necessity of animal research, at least

for certain applications.

In spite of the ongoing debate, the past few years have witnessed a remarkable

progress in developing and characterizing animal models of PD. This progress

has been inspired by an increased understanding of the complex etiopathogenesis

and multisystem pathology of the human disease. Thanks to both conceptual and

technical advances, we now have unprecedented opportunities to recreate key

pathological aspects of PD in laboratory animals. In this review we have sought

to provide an up-to-date overview of the main rodent PD models available today,

appraising both their advantages and their limitations. The wide range of PD models

now available offers new opportunities, but it is at the same time a challenge for the

researcher to select the most suitable model for the questions under study. Our aim is

to offer both a critical reflection and an updated resource that can inform on the use of

suitable models for different research applications.

2 Models in different species
Comparing results across animal species serves as a powerful approach to promote

scientific rigor and to discover biological principles of universal validity (Yartsev,

2017). The possibility to model PD in a multitude of species should thus be regarded

as an asset to research, ultimately leading to a better understanding of the human

disease.

Using either toxins or genetic perturbations, PD-like conditions can be induced

in invertebrate organisms, the most common ones being the fruit fly Drosophila
Melanogaster (Guo, 2010) and the nematode Caenorhabditis Elegans (Maulik

et al., 2017). These models are particularly useful for high-throughput genetic ana-

lyses (such as, experimental mutagenesis to identify genetic modifiers of α-synuclein
pathology or toxicant exposure). When more advanced behavioral or functional an-

alyses are needed, investigators usually prefer to produce PD models in vertebrate

species, the most common being either small fishes (Matsui and Takahashi, 2018)

or rodents. The particular strength of small fish models (such as zebrafish) is their

amenability to high-throughput in vivo drug screening studies (Flinn et al., 2008),
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which can be aided by new automated methods of phenotypic analysis (Palmer et al.,

2017). On the other hand, rodents show a significant degree of human homology re-

garding the organization of cortico-basal ganglia-thalamocortical loops (Reiner

et al., 1998) and their corresponding behavioral functions (Redgrave et al., 2010).

Moreover, rodents can produce complex movements homologous to those in humans

(Sacrey et al., 2009) and they exhibit functionally similar motor deficits after nigros-

triatal dopamine (DA) lesions, as well as analogous motor responses to dopamine

(DA) replacement therapy (Cenci et al., 2002). Being less expensive than non-human

primates (NHPs) and ethically less problematic to use, rodents continue to provide

the most widely used models in PD research, particularly for studies that require an

analysis of brain functions including movement, cognition, sleep, affective behav-

iors. In addition, rodent models are used increasingly often in studies addressing

the functionality of peripheral organs (in particular, bladder, heart, gastrointestinal

tract) in the setting of experimental parkinsonism or synucleinopathy. Because of

the above reasons, most of the literature review provided in this chapter is based

on rodent studies.

Models in NHP, particularly those in macaque monkeys, offer the specific advan-

tage of a striking similarity to humans regarding the phenomenology of different

movement disorders (Cenci and Crossman, 2018; Johnston and Fox, 2015). This

makes it possible to quantify parkinsonian and dyskinetic features in the animals

using similar principles to those used in patients, streamlining the translational path

from the lab to the clinic (Fox and Brotchie, 2019). Moreover, the larger brain and

body size of macaque monkeys conceivably facilitates the experimental evaluation

of therapeutic interventions requiring surgery, such as those needed to infuse trophic

factors and implant cells or stimulation devices. The main disadvantages of NHP

models are a high cost and the necessity of highly specialized housing facilities.

For these reasons, NHP models are currently used only in few research centers

worldwide.

3 The importance of nigrostriatal dopaminergic degeneration
Although PD is clinically and pathologically heterogeneous (Berg et al., 2014; Erro

et al., 2016), a severe loss of putaminal dopaminergic innervation is a necessary pre-

requisite for the appearance of motor symptoms that lead to clinical diagnosis. Par-

kinsonian motor features become manifest when more than 50% of putaminal DA

contents are lost (Fearnley and Lees, 1991), and a rapid loss of the residual putaminal

DA input appears to occur during the first 5 years following clinical diagnosis

(Kordower et al., 2013). Accordingly, in both rodent and macaque models of PD,

motor deficits start to become manifest when striatal motor regions have lost more

than 50% of their dopaminergic input (Boix et al., 2018; Decressac et al., 2012b), and

a full-blown parkinsonian-like syndrome appears only after removing more than

80% of putaminal dopaminergic fibers (Francardo et al., 2011; Guigoni et al.,

2005;Winkler et al., 2002). Therefore, reports of hypokinetic features in animals that
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exhibit only a modest degree of DA cell loss and/or mild deficits in striatal DA con-

tents should raise suspicion of a systemic disease or pervasive neurological intoxi-

cation depending on the model at hand (in both instances, the animal would move

less). To ascertain the parkinsonian character of motor features observed in the an-

imal model, it is recommended to evaluate the effects of L-DOPA (Cenci et al., 2002;

Xu et al., 2012). Indeed, treatment with L-DOPA improves gross hypokinetic deficits

(Francardo et al., 2011; Lundblad et al., 2002), although it may not improve tasks

requiring a high degree of motor precision (Metz and Whishaw, 2002; Winkler

et al., 2002). If the denervation of striatal motor regions exceeds 90%, the majority

of animals treated with therapeutic-like doses of L-DOPA will develop abnormal in-

voluntary movements analogous to L-DOPA-induced dyskinesia (LID) (Francardo

et al., 2011; Winkler et al., 2002). A similar relationship between degree of putam-

inal DA denervation and incidence of LID has been reported in macaque models of

PD (Schneider, 1989).

The crucial importance of striatal DA depletion to the appearance of PD-relevant

motor deficits explains the continuing interest in developing experimental ap-

proaches to selectively damage dopaminergic neurons. As reviewed below, mito-

chondrial and oxidant toxins have been in use for many years. Additional and

more recent methods involve an intracerebral delivery of proteasome inhibitors.

Moreover, efficient approaches have been developed to induce α-synuclein
pathology using viral vectors, inoculation of α-synuclein fibrils, or transgenic tech-

nologies. A graphic summary of these different approaches is presented in Fig. 1.

4 6-Hydroxydopamine
The first toxin-based animal model of PD consisted of rats sustaining intracerebral

injections of 6-hydroxydopamine (6-OHDA) (Ungerstedt, 1968). This chemical is a

hydroxylated analog of DA that also occurs in the brain (Jellinger et al., 1995).

6-OHDA is a catecholamine-selective neurotoxin because it enters neurons via

the dopamine or noradrenaline transporter. Once inside the neuron, 6-OHDA un-

dergoes auto-oxidation and conversion to reactive oxygen species (ROS) (Rotman

and Creveling, 1976). Neurons rapidly die because of oxidative damage to cellular

constituents and mitochondrial dysfunction (Kupsch et al., 2014), and there is wide

consensus that such mechanisms are relevant to the pathogenesis of the human dis-

ease (Grunewald et al., 2019). Moreover, the degeneration of DA cell bodies and

axon terminals triggers proinflammatory glial reactions that contribute to the neuro-

degenerative process [reviewed in (Kuter et al., 2020)], and this mechanism is also

relevant to the pathogenesis of PD.

6-OHDA does not cross the blood-brain barrier (BBB) and therefore necessitates

a direct delivery to the nigrostriatal system, which leads to dopaminergic degener-

ation in all animal species. For the sake of producing PD models, the three most

common injection targets are the substantia nigra, the medial forebrain bundle

(MFB), and the striatum. Injection of 6-OHDA into the MFB is the preferred
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procedure to obtain a model of severe and reproducible dopaminergic degeneration

with negligible tendency for animals to spontaneously compensate even at very long

survival times [reviewed in (Francardo et al., 2017)]. Thanks to the predictability,

stability, and severity of the DA lesion, this model is particularly useful for studies

evaluating the effects of long-term pharmacological treatments or neural transplants.

On the other hand, models based on intrastriatal 6-OHDA delivery afford a

remarkable flexibility in modulating the severity and regional distribution of DA de-

nervation by varying toxin dose and injection coordinates (Francardo et al., 2011;

Winkler et al., 2002). Intrastriatal 6-OHDA models have proven particularly useful

to study the effects of neuroprotective and neurorestorative treatments (Bjorklund

et al., 1997; Francardo et al., 2017).

A lot has been learned by studying 6-OHDA lesion models of PD. Beside the

elucidation of many potential treatment principles, including circuit restoration

(Thompson and Bjorklund, 2012) and neuroprotection (Francardo et al., 2017),

FIG. 1

Overview of the main methods currently used to obtain animal models of PD exhibiting

degeneration of nigrostriatal DA neurons.
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research carried out on these models has elucidated questions of fundamental impor-

tance, such as the relationship between nigrostriatal damage and motor dysfunction

(Decressac et al., 2012b; Kirik et al., 1998; Winkler et al., 2002), the postsynaptic

consequences of DA denervation (Cenci and Konradi, 2010; Kostrzewa, 1995;

Simola et al., 2007), and compensatory responses to dopaminergic damage (Lee

et al., 2008; Zigmond, 1997). Moreover, rats with 6-OHDA lesions still provide

the best validated rodent model to study L-DOPA-induced dyskinesia in the labora-

tory (Cenci and Crossman, 2018). Like any other approach targeting the nigrostriatal

dopaminergic pathway, 6-OHDA lesions do not mimic the multisystem pathology of

PD. However, it should be noted that PD-relevant pathological features are usually

found also in non-dopaminergic neuronal systems, including serotonergic and nor-

adrenergic projections and striatal neuron dendrites [reviewed in (Cenci, 2014,

Fieblinger and Cenci, 2015)]. Moreover, it is technically possible to combine the

injection of 6-OHDAwith other genetic or chemical lesions in the same animal. Not-

withstanding these possibilities, 6-OHDA-based models do not mimic two charac-

terizing features of nigrostriatal neurodegeneration in PD, that is, the progressive

time course and the formation of intracellular α-synuclein aggregates.

5 1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)
MPTP was discovered as a contaminant of synthetic heroin following the report of a

severe parkinsonian syndrome developing in some users of illicit drugs in California

(Langston et al., 1983). MPTP is a lipophilic compound that can cross the BBB. Once

in the brain, it is metabolized by monoamine oxidase B (MAO-B) to the potent

dopaminergic neurotoxin 1-methyl-4-phenylpyridinium ion (MPP+) (Chiba et al.,

1984), which is a structural analog of DA and can therefore be taken up by dopami-

nergic neurons via the DA transporter (DAT). After entering the neuron, MPP+

becomes highly concentrated in the mitochondria and inhibits complex 1 of the elec-

tron transport chain (Ramsay et al., 1986), causing both inhibition of mitochondrial

respiration and ROS accumulation. MPTP has been used to induce dopaminergic de-

generation in both invertebrate and vertebrate species, the latter including non-

human primates (Johnston and Fox, 2015), minipigs (Nielsen et al., 2016), and mice

(Meredith and Rademacher, 2011). Rats are, however, resistant to MPTP toxicity

(Sundstrom and Samuelsson, 1997), which is partly due to their increased capacity

for vesicular sequestration of this toxin (Staal et al., 2000). Several protocols have

been established to induce MPTP lesions in mice, consisting of acute, subchronic, or

chronic regimens of MPTP intoxication [reviewed in (Meredith and Rademacher,

2011)]. The generally large interest in MPTP models can perhaps be attributed to

the fact that the toxin is technically easy to administer (at least compared to toxins

requiring intracerebral delivery), and that MPTP has been found to cause parkinson-

ism in humans.

Collectively, MPTP lesion models have had a remarkable scientific impact be-

cause they have been widely used to test hypotheses regarding both pathogenic

32 CHAPTER 2 Animal models for preclinical Parkinson’s research



mechanisms and neuroprotective treatments for PD (Langston, 2017; Przedborski

and Vila, 2003). Moreover, MPTP-lesioned monkeys have been essential to identify

new symptomatic treatments based on circuit modulation [reviewed in (Wichmann

et al., 2018)]. The discovery of MPTP and its dopaminergic neurotoxicity has also

spurred a new wave of epidemiological research on the role of environmental tox-

icants in the etiopathogenesis of PD [reviewed in (Langston, 2017)].

Like 6-OHDA-based models, MPTP-lesioned animals do not reproduce the mul-

tisystem pathology of PD nor the formation of intracellular protein aggregates

(Johnston and Fox, 2015). Although continuous systemic MPTP infusion with os-

motic minipumps has been proposed as progressive PD model featuring α-synuclein
inclusions in DA neurons (Fornai et al., 2005), these findings have been difficult to

replicate (Alvarez-Fischer et al., 2008). In addition, MPTP models in mice may

entail a high mortality, variability in behavioral and biochemical outcomes, and a

potential for spontaneous compensation already within few months (Francardo,

2018; Meredith and Rademacher, 2011; Rousselet et al., 2003). This may explain

why 6-OHDA is preferred to MPTP for the sake of producing mouse models to eval-

uate symptomatic and/or antidyskinetic treatments for PD. For these applications, the

animal model must exhibit reproducible motor deficits that remain stable under a

sufficiently long time.

6 Environmental toxicants
Several epidemiological studies have demonstrated an association between rural

residence, pesticide exposure, and an increased risk of PD (Ascherio and

Schwarzschild, 2016; Chade et al., 2006). Accordingly, some environmental toxicants

present in rural environments have been tested for their capacity to induce nigrostriatal

DA degeneration in animals [partly reviewed in (Jiang and Dickson, 2018)]. Among

these toxicants, the herbicide paraquat and the pesticide rotenone have now become

well-established research tools for both in vitro and in vivo applications.

6.1 Rotenone
Rotenone (a natural extract from plants) is a broad-spectrum insecticide and pesti-

cide. Because of its hydrophobicity, rotenone can easily cross the blood-brain bar-

rier, and once in DA neurons, it inhibits mitochondrial complex I and activates the

production of ROS (Cannon and Greenamyre, 2010). Greenamyre and collaborators

were the first to develop an animal model of PD based on the continuous adminis-

tration of rotenone via osmotic minipumps (Betarbet et al., 2000). In part of the an-

imals, rotenone administration induced loss of nigrostriatal DA neurons associated

with formation of α-synuclein inclusions and development of hypokinetic-rigid fea-

tures. Locus coeruleus noradrenergic neurons were mildly affected too (Betarbet

et al., 2000). This seminal publication was followed by other studies reporting toxic

effects of rotenone on multiple neuronal systems. In particular, H€oglinger and
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colleagues reported that chronic infusion of rotenone causes damage to striatal sero-

tonergic fibers, striatal projection neurons and cholinergic interneurons, pedunculo-

pontine tegmental nucleus and locus coeruleus, concluding that rotenone

intoxication is more suitable to model atypical parkinsonian syndromes than PD

(Hoglinger et al., 2003). In a similar vein, using different rotenone doses and admin-

istration routes in rats, other studies reported lack of correlation between loss of stria-

tal DA innervation and motor deficits, concluding that the motor phenotype induced

by rotenone intoxication may depend on some pervasive neurological effects of the

toxin (Fleming et al., 2004; Lapointe et al., 2004).

Since this earlier controversy, some successful attempts have been made to in-

crease the reproducibility and specificity of rotenone models by carefully titrating

the toxicant dose and using a more lipophilic injection vehicle (Cannon et al.,

2009). Moreover, unilateral infusion of rotenone into the medial forebrain bundle

was reported to produce progressive dopaminergic degeneration, accompanied by

increased expression and aggregation of α-synuclein, in the absence of peripheral

toxicity (Ravenstijn et al., 2008).

6.2 Paraquat
The herbicide paraquat has a structure similar to MPP+. Like MPTP, paraquat can

cross the BBB, it is taken up by the DAT, and induces dopaminergic degeneration

via oxidative stress and mitochondrial dysfunction (Fei et al., 2008; Powers et al.,

2017). Paraquat is usually administrated orally or intraperitoneally to rats or mice,

and it is most often combined with the fungicide maneb, which has been found to

potentiate paraquat toxicity toward nigrostriatal DA neurons (Thiruchelvam et al.,

2000). The dose and duration of the treatment have varied between studies, and

so has the behavioral-histopathological phenotype of the corresponding animal

models. Nevertheless, most studies have shown that paraquat can induce a dose-

dependent partial degeneration of nigrostriatal DA neurons, although the effects

on striatal dopaminergic fibers and DA levels have been quite variable, possibly

due to compensatory mechanisms [for a recent review see (Cenci and Sgambato,

2020)]. Interestingly, low-dose chronic administration of paraquat has been reported

to cause upregulation and aggregation of α-synuclein in wild-type mice (Manning-

Bog et al., 2002) and to exacerbate markers of α-synuclein aggregation in the enteric
nervous system in a transgenic synucleinopathy model (Naudet et al., 2017).

In summary, herbicides and pesticides are very interesting research tools because

of their relevance to the environmental components of PD etiopathogenesis,

although they induce only partial dopaminergic degeneration and entail a generally

high risk of systemic toxicity if used at effective doses. If applied at low doses,

herbicides and pesticides can provide a valuable approach to probe the vulnerability

of nigrostriatal DA neurons under different conditions, such as aging (Cannon et al.,

2009; Thiruchelvam et al., 2003), stress and gut dysbiosis (Dodiya et al., 2020),

α-synuclein pathology and neuroinflammation (Ling et al., 2004), or any other factor

that may be relevant to the etiopathogenesis of PD.
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7 Proteasome inhibitors
Deficits in protein degradation are attributed a key role in the pathogenesis of PD as

they are reciprocally linked with the accumulation and misfolding of α-synuclein
(Xilouri et al., 2013). Since the early 2000s, there has been an increasing interest

in modeling PD by administering proteasome inhibitors to a variety of species

(C. Elegans, small fishes, mice, rats, minipigs, and non-human primates) (Bentea

et al., 2017; Lillethorup et al., 2018). Proteasome inhibitors are drugs originally de-

veloped for the treatment of cancer (myeloma, in particular) based on their capacity

to induce programmed cell death. Compounds of this class have been administered to

rodents using systemic or intracerebral deliverymethods. Themost successful results

have been obtained by injecting potent and irreversible proteasome inhibitors (such

as lactacystin) into the substantia nigra or the MFB [reviewed in (Bentea et al.,

2017)]. The corresponding rodent models exhibit a rapid, dose-dependent degener-

ation of nigral DA neurons (McNaught et al., 2002; Xie et al., 2010) that can be as-

sociated with L-DOPA-responsive motor deficits (Konieczny et al., 2014). The

mechanisms underlying neurodegeneration in these models include apoptotic cell

death, mitochondrial dysfunction, iron dysregulation, oxidative and nitrosative stress

[reviewed in (Bentea et al., 2017; Le, 2014)].

The doses of lactacystin needed to obtain�50% loss of nigrostriatal DA neurons

produce various degrees of extranigral pathology. Interestingly, in rats sustaining

intranigral injections of lactacystin, substantial neurodegeneration has been detected

in the ipsilateral pedunculopontine nucleus (Elson et al., 2016), causing >60% loss

of cholinergic neurons and somatic hypotrophy of the remaining neurons in this re-

gion (Pienaar et al., 2015). This observation is in keeping with the reported high

sensitivity of cholinergic neurons to proteasomal inhibition, as demonstrated in a

dose-response study of lactacystin delivery to the basal forebrain (MacInnes

et al., 2008). Furthermore, rats sustaining unilateral injections of lactacystin in the

MFB have been found to exhibit a progressive pattern of brain structural changes

including striatal atrophy, cortical thinning, and enlargement of the lateral ventricles,

which were already significant by 3 weeks but became more severe by 5 weeks post

injection (Vernon et al., 2011). The progressive extranigral pathology may depend

on inflammatory mechanisms because intracerebral injections of lactacystin have

been shown to produce widespread, pronounced and sustained activation of astroglia

and microglia (Elson et al., 2016; Savolainen et al., 2017). These glial reactions ap-

pear to greatly exceed those reported in neurotoxin-based PD models and may stem

from a direct action of proteasome inhibitors on glial cells (Ding et al., 2004).

One interesting feature of proteasome inhibitor models is the occurrence of neu-

ronal α-synuclein accumulation within the affected regions, with the appearance of a

diffusely increased cellular immunostaining for α-synuclein (Elson et al., 2016,

Savolainen et al., 2017), sometimes associated with the formation of small inclusion

bodies (Elson et al., 2016; MacInnes et al., 2008; McNaught et al., 2002) that may be

immunopositive for Ser129-phosphorylated α-synuclein (Bentea et al., 2015). It is,
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however, unclear whether α-synuclein accumulation plays a causal role in the neu-

ronal death caused by proteasome inhibitors [reviewed in (Bentea et al., 2017)].

In conclusion, although proteasome inhibitor models may be associated with non-

specific neuronal and glial cell toxicity, they provide useful tools to investigate

pathways of proteostatic dysfunction and iron dyshomeostasis, and to evaluate neu-

roprotective treatments targeting these pathways (Bentea et al., 2017, Le, 2014).

Moreover, proteasome inhibitors can be administered to animals overexpressing

α-synuclein as an approach to trigger or aggravate the neurodegenerative process

(Stefanova et al., 2012).

8 Alpha-synuclein models
The role of α-synuclein in PD pathogenesis goes back to the identification of a mu-

tation in the corresponding gene (SNCA) as a cause of familiar parkinsonism

(Polymeropoulos et al., 1997). Interest in the pathogenic role of this protein was fur-

ther reinforced by the observation that α-synuclein is a major component of Lewy

bodies and Lewy neurites (Spillantini et al., 1998), and that elevated expression of

the non-mutated protein is sufficient to cause a PD-like disorder in individuals car-

rying SNCA duplication or triplication (Chartier-Harlin et al., 2004; Singleton et al.,

2003). Attempts to replicate α-synuclein-related pathology in animals were first

made using transgenic techniques, soon followed by a development of viral vectors

(recombinant adeno-associated virus, AAV, or lentivirus, LV) and, most recently,

intracerebral injections of α-synuclein fibrils. The tools generated in this way have

added an important new dimension to the modeling of PD pathogenesis involving

protein misfolding and aggregation, and they have also made it possible to study

mechanisms of disease progression related to the cell-to-cell spreading of toxic

α-synuclein species. The transgenic and viral vector models are complementary.

The transgenic models, obtained in mice, offer opportunities to model systemic dis-

ease, but are less useful for the study of cell-type specific pathogenic processes. The

viral models, on the other hand, are applicable to both mice, rats and monkeys. They

offer the opportunity to study α-synuclein -related toxic processes specific to mid-

brain DA neurons, while also being applicable to other brain regions or neuron types.

8.1 The AAV-α-synuclein model
Like the 6-OHDA toxin, AAV mediated α-synuclein overexpression requires that

the vector is injected locally in the brain using stereotactic surgery. Although this

may seem a limitation, it offers distinct advantages in that the overexpression of

α-synuclein (wild-type or mutated) can be selectively targeted to the midbrain region

encompassing substantia nigra (SN)-ventral tegmental area (VTA) and restricted to

one side of the brain, leaving the contralateral side as an internal control. A range

of AAV vector serotypes have been explored for this purpose. The early studies

made use of recombinant vectors of the AAV2 serotype (Kirik et al., 2002;
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Yamada et al., 2004), which have later been replaced by vector serotypes with

better tissue spread and transduction efficiency for midbrain DA neurons, notably

AAV2/5 (Gorbatyuk et al., 2008); AAV2/6 (Decressac et al., 2012b), AAV2/7

(Van der Perren et al., 2015a), AAV2/8 (McFarland et al., 2009) and AAV2/9

(Bourdenx et al., 2015). The transduction efficiency in midbrain DA neurons

achieved with LV vectors (usually not more than 50%) is clearly lower than that

obtained with the more efficient AAV vectors, and the extent of DA neuron cell loss

is also less pronounced (typically between 25% and 35%) (Lauwers et al., 2003,

2007; Lo Bianco et al., 2002).

AAV mediated overexpression of α-synuclein induces progressive degenerative

changes in midbrain DA neurons that replicate some of the key features of the human

disease, most prominently the development of α-synuclein-containing protein aggre-
gates positive for Ser129-phosphorylated α-synuclein (p-Syn+), accompanied by

prominent axonal pathology and a progressive loss of nigral DA neurons. Neuritic

changes develop early and precede DA neuron cell loss. Thus, the dendritic projec-

tions of DA neurons in the SN pars reticulata are truncated with distorted morphol-

ogy, and the pre-terminal axons display swollen and p-Syn+ distorted profiles. As in

the human disease, these degenerative changes are associated with an early activa-

tion of microglia, an increase in pro-inflammatory cytokines, and lymphocyte

infiltration preceding cell loss [for review see (Ulusoy et al., 2010, Van der

Perren et al., 2015b, Volpicelli-Daley et al., 2016)].

The progressive time-course of neurodegeneration is an attractive feature of this

model, making it possible to distinguish between an early presymptomatic stage
and a later symptomatic stage. The presymptomatic stage corresponds to the first

month after vector injection, and it is characterized by the development of inclusions,

axonal pathology and impaired DA synthesis and release. The symptomatic stage de-
velops over the subsequent months, when a significant portion (>50%) of the nigral

DA neurons have degenerated and part of the still surviving neurons express p-Syn+

pathology (Decressac et al., 2012b; Lundblad et al., 2012). With this level of cell loss

(50–80%) the animals show impairments in standard motor tests similar to what is typ-

ically seen following intrastriatal 6-OHDA lesions (Bourdenx et al., 2015, Decressac

et al., 2012a,b, Van der Perren et al., 2015a). From a direct comparison between the

two models (Decressac et al., 2012b), we have suggested that the motor impairment in

the toxin-based model is well correlated with the magnitude of DA neuron loss, while

the motor deficits seen in the AAVmodel result from the combination ofDA cell death

and dysfunction of the remaining nigrostriatal neurons. While both of the two models

have been developed to mimic DA neuron deficiency, they differ in their temporal and

neuropathological characteristics, and replicate different pathophysiological aspects of

the human disease. The early developing axonal pathology and striatal DA dysfunction

preceding overt nigral cell loss (Butler et al., 2015; Chung et al., 2009; Lundblad et al.,

2012) is a particular feature of the AAV-α-synuclein model that mimics the disease

progression seen in human PD (Burke and O’Malley, 2013; Kordower et al., 2013).

The main weakness of the AAV-α-synuclein model is the variability in the

magnitude of the neurodegenerative response, which has made it difficult to obtain
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consistent behavioral impairments. The magnitude of DA neuron cell loss varies

considerably depending on vector types and batches. As discussed in further detail

in a recent review (Volpicelli-Daley et al., 2016), this variability is due to many fac-

tors: the viral vector serotype, the promoter used, the production process, and the

quality and purity of the final product. A further complicating factor is that the com-

mon measure of vector titer, genome copies/μL, does not reliably predict the in vivo
transduction efficiency of the AAV vector. For this reason, it is necessary to establish

the optimal working titer for each individual production round before it is used in a

planned experiment. For each vector batch, however, the transduction efficiency can

be expected to be consistent from animal to animal, and the variability in outcome

will be the same as for 6-OHDAmodels (i.e., due to investigator skills in stereotactic

targeting).

8.2 The PFF inoculation model
This model builds on the finding that oligomeric fibrillar α-synuclein can act as a

seed to recruit the monomeric form of the protein into pathogenic aggregates. Using

preformed fibrils of recombinant α-synuclein (PFFs), this property has been demon-

strated in cell cultures in vitro (Lu et al., 2009; Volpicelli-Daley et al., 2011, 2014), as

well as after injection into the brain (Luk et al., 2012a,b; Osterberg et al., 2015). The

formation of protein aggregates and the progressive development of cellular dys-

function and cell death are not caused by the fibrils themselves, but by recruitment

of endogenous α-synuclein into cellular inclusions. Thus, the injected PFFs are not

pathogenic when applied to cells lacking α-synuclein (Luk et al., 2012b; Volpicelli-

Daley et al., 2011, 2014). Moreover, their toxicity is increased and accelerated in the

presence of elevated levels of monomeric α-synuclein (Peelaerts et al., 2015; Thakur
et al., 2017), and the formation of aggregates is more efficient if PFFs and mono-

meric α-synuclein are from the same animal species (Luk et al., 2016; Peelaerts

et al., 2015).

The robust formation of inclusions resembling Lewy bodies and Lewy neurites is

a characteristic feature of the PFF model not present in AAV-α-synuclein models.

This feature makes this model highly useful for studying the formation and spread

of aggregated α-synuclein species. The PFF-induced inclusions share many features

with those found in human PD brains: they have a filamentous structure and they are

insoluble, hyperphosphorylated, ubiquitinated and morphologically similar to the

spheroid inclusions seen in Lewy bodies and neurites (Volpicelli-Daley et al.,

2011, 2014).

The pathogenic process is quite fast in cultured neurons, developing within

1–2 weeks (Volpicelli-Daley et al., 2011), but it progresses very slowly when PFFs

are injected into the brain of normal animals not overexpressing α-synuclein. Thus, it
may take up to 6 months for significant neurodegenerative changes to appear in mid-

brain DA neurons when the PFFs are injected into the striatum or SN (Espa et al.,

2019; Luk et al., 2012a; Paumier et al., 2015; Peelaerts et al., 2015). The same
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protracted time course of aggregate formation and toxicity has been observed follow-

ing injections of PFFs into the cortex (Osterberg et al., 2015).

Fibril inoculation and viral vector models can have complementary applications

due to differences in their associated pathogenic processes. The PFF model allows

for studying the seeding process and the formation, spread and impact of toxic ag-

gregates, while models with vector-mediated α-synuclein overexpression make it

possible to study successive stages in the development of cellular and functional

changes, including presymptomatic-predegenerative changes. The protracted time-

course seen in PFF models is experimentally disadvantageous for evaluating the

effects of neuroprotective treatments on behavioral impairments and neuronal cell

loss. An additional potential concern is the limited spread of the PFFs within the tis-

sue, which limits the number of DA neurons that can be targeted by an injection in the

striatum. This may be less of an issue in the small mouse brain, but more of a problem

when applying this approach to rats. In the most extensive study thus far performed in

rats, Caryl Sortwell’s group have studied the effects of unilateral intrastriatal PFF

injections for up to 6 months (Patterson et al., 2019). At the highest PFF dose

(16μg) they observed a progressive downregulation of tyrosine hydroxylase (TH)

expression in about 30% and 50% of nigral neurons at 4 and 6 months, respectively.

Actual cell loss was evident only at 6 months, with a loss of approximately 30%

nigral neurons (identified using the pan-neuronal marker NeuN). Notably, a reduc-

tion in nigral NeuN+ cell number was observed also on the contralateral side. The

accumulation of p-Syn, which was observed in about one third of the nigral neurons,

peaked at 2 months and was largely gone by 6 months. Consistent with the fairly

modest degenerative changes, no or only minimal impairment in motor behavior

was observed in the PFF-injected rats even at the longest time point. These data re-

inforce the impression that it is difficult to obtain consistent and significant behav-

ioral impairments using intrastriatal PFF injections in rats [see (Volpicelli-Daley

et al., 2016) for further discussion of this issue].

As already mentioned, the most interesting use of the PFF model consists in

mechanistic studies of seeding, aggregation and spread of α-synuclein-related pa-

thology in the brain. PFFs injected into the brain parenchyma are internalized by neu-

rons and axons, and efficiently transported retrogradely in neurons whose axons

terminate in the injected area. Thus, the initial spread of synuclein pathology is

due to retrograde axonal transport of the PFFs, which will seed the formation of

p-Syn+ aggregates in the parent neurons. Following injections of PFFs into the stri-

atum, p-Syn+ inclusions will appear within 1–2 months not only in the striatum

itself, but also in the principal regions projecting to the striatum, i.e., substantia nigra,

cortex, thalamus, amygdala (Abdelmotilib et al., 2017; Luk et al., 2012a; Masuda-

Suzukake et al., 2013; Paumier et al., 2015). Similarly, PFF injections into the

hippocampus will result, at 3 months, in the appearance of pSyn+ pathology in some

though not all neuronal populations projecting to the injected area (Nouraei et al.,

2018). In the same study, some limited anterograde transport was observed in two

of the major efferent projections from the hippocampus, entorhinal cortex and

septum.
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It remains unclear, however, whether any significant cell-to-cell transfer of synu-

clein pathology occurs in this model, and if so, how long it would take for this mech-

anism to become functionally relevant. Transfer of α-synuclein between cells, in

monomeric or aggregated form, has been clearly demonstrated in cell culture sys-

tems, suggesting that this is likely to occur also in the brain [see (Tyson et al.,

2016) for review]. The most careful investigation of this issue has been performed

by Patrik Brundin’s group using mice that received injections of human or mouse

PFFs into the olfactory bulb (Rey et al., 2013, 2016, 2018). In this model, cellular

immunoreactivity for p-Syn+ was found to spread from the olfactory bulb to anatom-

ically connected olfactory and non-olfactory regions, a process that progressed grad-

ually over 12 months. Over the first 9 months, the spread of synuclein inclusions

appeared to occur via retrograde axonal transport as it was limited to first-order af-

ferents to the injected area (Mason et al., 2016; Mezias et al., 2020). At longer time

points, a reduction in the density of synuclein aggregates was observed in some re-

gions, and no further spread was detected (Rey et al., 2018). Thus, in contrast to the

continued disease progression seen in the advanced stages of human PD, the progres-

sion of PFF-induced pathology seems to taper off after about a year.

Taken together, these data indicate that cell-to-cell spread of PFF-induced pathol-

ogy is a late event. The initial spread is clearly due to retrograde transport along af-

ferent connections. At a later stage, only many months later, monomeric or fibrillar

α-synuclein species released from the affected neurons may be taken up by adjacent

cells or axons to act as seeds for further propagation of synuclein pathology to other

interconnected brain regions. This slow and protracted progression limits the useful-

ness of the PFF model for evaluating therapies that target the spread of PD pathology

(e.g., antibodies directed against α-synuclein oligomers). If the goal is to counteract

or block cell-to-cell transfer, the use of assessment end-points shorter than 1 year will

be irrelevant—at such short survival times the role of cell-to-cell transfer in the

spread of p-Syn+ pathology is likely to be negligible. For this type of studies, the

more efficient spread of pathology seen in PFF-injected transgenic α-synuclein over-
expressing mice may provide a more attractive model. In a study performed by Luk

et al. (2012b), human α-synuclein PFFs were injected unilaterally into the striatum in

transgenic mice overexpressing human mutated (A53T) α-synuclein. The injection
was given at a time point well before any pathology related to the transgene had

appeared. With this approach, p-Syn+ pathology developed more rapidly and was

much more widespread, than that obtained after similar injections in wild-type mice

(Luk et al., 2012b). Motor deficits appeared after about 3 months, a time point when

extensive p-Syn+ pathology had already emerged. In this transgenic model, p-Syn+

inclusions developed not only in structures directly connected with the injected area

(including cortex, thalamus and substantia nigra), but notably also in more distant

sites, such as deep cerebellar nuclei, remote brainstem areas, and spinal cord, indi-

cating that an efficient cell-to-cell transfer had occurred in this model. Whether this

represents actual trans-synaptic transmission of α-synuclein seeds, rather than pas-

sive diffusion within the extracellular space, is currently unclear and remains to be

investigated (Luk and Lee, 2014).
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8.3 Combined AAV-PFF α-synuclein models
A shortcoming of the AAV overexpression method is that the α-synuclein levels

needed to induce sufficient DA neuron cell death (linked to significant motor impair-

ments) are quite high, in the order of 4–5-fold above the endogenous levels

(Decressac et al., 2012b; Faustini et al., 2018). This is well above what may be seen

in human PD, raising the question whether the cellular toxicity associated with these

high expression levels is predictive for the clinical condition. One way to circumvent

this limitation is to combine viral vector-mediated α-synuclein overexpression with

PFF inoculation, delivered to the SN either as two separate injections (Thakur et al.,

2017) or mixed in a single injection (our yet unpublished data). As explained above,

PFFs can act as seeds for the recruitment of monomeric α-synuclein into toxic

fibrillar aggregates, the speed by which this happens is dependent on the level of mo-

nomeric α-synuclein (Volpicelli-Daley et al., 2011, 2014), and the seeding is most

efficient if PFFs and monomeric α-synuclein are from the same species (Luk

et al., 2016). In the combined AAV-PFF model, (Thakur et al., 2017) we expressed

humanWT α-synuclein at a low level (closer to that seen in patients with SNCA trip-

lication) and Lewy-like pathology, neurodegeneration and DA neuron cell death

were triggered by injection of human PFF seeds into the SN. Animals receiving both

the AAV and the PFF exhibited an enhanced and accelerated development of pathol-

ogy where the formation of p-Syn+ cellular and neuritic inclusions was evident al-

ready by 3 weeks after PFF injection. This pathology was accompanied by a

prominent inflammatory response involving both activation of resident microglia

and infiltration of CD4+ and CD8+ T-lymphocytes. The degeneration of nigral

DA neurons was progressive, leading to a 50–60% cell loss by 24 weeks (Thakur

et al., 2017). The progressive nature of the combined AAV-PFF model may offer

the possibility to pre-screen the animals at an early time-point using sensitive behav-

ioral tests (as currently done in 6-OHDA-lesioned rats and mice) in order to identify

those animals that will become fully symptomatic at a later time point. In this way, it

would become possible to evaluate potential neuroprotective treatments in well-

matched groups of animals that are on the way to developing a significant disease

phenotype.

This combined approach is applicable also for the induction of cortical Lewy-like

pathology analogous to that seen in human Lewy body disease. In a recent study

(Espa et al., 2019), we induced overexpression of human wild-type α-synuclein bi-

laterally in rat medial prefrontal cortex using an AAV2/6 synuclein vector, followed

3 weeks later by an injection of human PFFs. The PFF injection targeted the rostro-

medial striatum based on the expectation that PFFs would be efficiently transported

from this region to the AAV-targeted cortical areas via retrograde axonal transport

(which proved to be the case). While neither the α-synuclein overexpression nor the
PFFs induced any behavioral phenotype if given alone, their combined application

induced significant impairments in tests of working memory, attention and inhibitory

control, accompanied by the development of prominent proteinase K-resistant,

p-Syn+ inclusions, swollen and distorted cortical dendrites, and cortical neuronal
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loss by 24 weeks (Espa et al., 2019). These results further support the notion that

inoculating fibril seeds into a brain region expressing high levels of monomeric

α-synuclein leads to an accelerated and amplified development of pathology (which

was found to also involve frontocortical afferent regions). Thanks to this approach, it

became possible to experimentally reproduce cognitive and pathological features rel-

evant to Lewy body disease using the rat frontocortical circuits as a model system.

In the studies by Thakur et al. (2017) and Espa et al. (2019), vector and PFFs were

administered with a 3–4-week interval. In a recent follow-up study (Hoban et al.,

under revision) we have now proceeded to combine the two preparations in a single,

mixed injection, which is experimentally more convenient. Following injection into

the rat SN, the same, accelerated and enhanced p-Syn+ pathology, inflammatory re-

sponse, and progressive DA neuron cell loss are obtained also in this version of the

AAV-PFF model. Significant motor impairments, as assessed in tests of forelimb use

(cylinder and stepping tests), are observed already by 3–4 weeks after injection, at a
time when most of the affected neurons still survive but in a down-regulated state

characterized by impaired striatal DA release and reduced expression of TH and ve-

sicular monoamine transporter 2 (VMAT2), as well as downregulation of nuclear

receptor related-1 (Nurr1) transcription factor (which controls the expression of

DA phenotype genes). At 3–4 months, when DA neurodegeneration is complete,

marked impairments in forelimb use is seen in at least half of the injected animals,

those with >50% nigral cell loss.

8.4 Transgenic α-synuclein overexpressing mice
Considerable efforts have been made to generate transgenic models of PD based on

overexpression of human α-synuclein in its wild-type or mutated forms. A database

assembled by the Joint Programme for Neurodegenerative diseases (JPND) lists a

total of 24 transgenic α-synuclein models published and characterized to date [list

available through (Joint Programme for Neurodegenerative Diseases, 2019)]. Only

few of them develop dopaminergic dysfunction and DA cell death of a magnitude

justifying their use as models of PD [see (Jiang and Dickson, 2018, Magen and

Chesselet, 2010) for review]. The first transgenic models in this category were gen-

erated by Eliezer Masliah’s group and expressed wild-type human α-synuclein under
either the platelet-derived growth factor beta (PDGF-beta) promoter (Masliah et al.,

2000) or the Thy-1 promoter (Chesselet et al., 2012; Rockenstein et al., 2002).

In these mice, expression of the α-synuclein transgene is widespread, and cytoplas-

mic and nuclear inclusions containing human α-synuclein develop in several brain

areas, including cortex, hippocampus, olfactory bulb, and to some extent also in

the SN.

In the PDGF-beta transgenic model, α-synuclein-positive inclusions at the level
of the SN were limited to only a few scattered cells. Nevertheless, the mice with the

highest level of transgene expression (Line D) were impaired in motor performance,

as assessed at 12 months in the rotarod test. This was accompanied by a 50%
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reduction in striatal TH immunostaining and TH protein levels, but no DA neuron

cell loss. The extent of nigral pathology was more prominent in the Thy-1 mice,

but the impact on the integrity of the nigrostriatal system remained quite modest:

a 40% reduction in striatal DA and 17% reduction in striatal TH, seen at 14 months,

without any measurable nigral cell loss (Chesselet et al., 2012). The changes in motor

behavior were bi-phasic: an early phase of locomotor hyperactivity at 4–5 months of

age was followed by a slow development of sensorimotor impairments that became

evident only at 14 months. The time-dependent changes seen in these two transgenic

strains seem compatible with a slowly developing axonopathy in nigrostriatal DA

neurons accompanied by a reduction in TH expression in the surviving neurons,

although the presence of neurodegenerative changes in several brain regions makes

it difficult to attribute the observed deficits exclusively to the pathology of nigros-

triatal DA neurons. Indeed, these mice also developed gut dysfunction and changes

in circadian rhythm that preceded the motor impairments, suggesting an early impact

of the α-synuclein transgene in areas outside the nigrostriatal system, akin to the

prodromal phase of human PD.

In a similar way, a constipation-like phenotype preceding motor impairments has

been observed in a bacterial artificial chromosome (BAC) transgenic mouse line

expressing wild-type α-synuclein from the complete SNCA locus at disease-relevant

levels (Janezic et al., 2013). These mice showed a 30% loss of nigral DA neurons at

18 months, preceded by a 30% reduction in striatal DA release, without any observ-

able α-synuclein pathology. These results suggest that the functional impairments

seen in these mice were caused by their elevated levels of monomeric α-synuclein
rather than a formation of toxic aggregates.

A more interesting PD-like phenotype has been obtained in transgenic mice

expressing an aggregation-prone, truncated version of human α-synuclein (1–120
α-synuclein) driven by the TH promoter (Tofaris et al., 2006; Wegrzynowicz

et al., 2019). In these mice the transgene expression is confined to DA neurons in

the SN and the olfactory bulb (though also occurring in locus coeruleus noradrena-

line neurons), having a pronounced impact on the integrity and function of the

nigrostriatal pathway. In a first version of this mouse model, the α-syn120 line

(Tofaris et al., 2006), dense α-synuclein cytoplasmic inclusions were observed in

atrophic TH-positive nigral neurons at 12–14 months, accompanied by a 30% reduc-

tion in striatal DA levels, while the number of TH cell bodies remained unchanged.

At the longest time-point analyzed, 18 months, the mice exhibited reduced sponta-

neous locomotor activity.

The Spillantini lab has recently published an improved version of this TH

promoter-driven 1–120 synuclein mouse, referred to as the MI2 line

(Wegrzynowicz et al., 2019). These mice show more prominent, progressive aggre-

gation of α-synuclein in nigral DA neurons and striatal DA terminals. The first

protein aggregates appear at 1.5 month of age in the form of small puncta, and then

develop into larger Lewy body-like aggregates at 6–12 months, some of which are

ubiquitin-positive and proteinase K-resistant. In these mice there was a significant

438 Alpha-synuclein models



loss of nigral TH neurons starting at 9–12 months and amounting to about 50% at

20 months of age. The first signs of motor impairment (affecting gait pattern) devel-

oped at 9 months of age, at a time when there was a marked reduction in striatal DA

release measured with microdialysis, but preceding the appearance of any significant

nigral cell loss. A more overt behavioral phenotype was observed only later (at

20 months) when 50% of nigral TH-positive neurons were lost. This sequence of

events—axon terminal dysfunction followed by cellular pathology and DA cell

death—is reminiscent of the histopathological progression seen in human PD, and

supports the view that α-synuclein-induced degenerative changes start at the level

of the axon terminals.

A large number of transgenic mouse lines have been generated carrying mutated

versions of α-synuclein (A53T, A30P or E46K). Many of these develop motor im-

pairments linked to a widespread synucleinopathy with intraneuronal α-synuclein
inclusions, but no overt damage to nigrostriatal DA neurons [see (Jiang and

Dickson, 2018, Magen and Chesselet, 2010) for review]. One notable exception is

a conditional transgenic model obtained using a tetracyclin-dependent inducible sys-

tem to overexpress human A53T α-synuclein selectively in midbrain DA neurons

(Lin et al., 2012). In these mice there is a 2–4-fold increase in α-synuclein protein

and mRNA in the midbrain, with a development of granular α-synuclein deposits

in nigral TH neurons and α-synuclein aggregates in striatal axons and terminals

by 12–18months of age. This is accompanied by a gradual loss of nigral DA neurons,

amounting to 15% at 1 month and 40% at 12–20 months of age. In this mouse model,

a motor impairment in open field and rotarod tests was reported to develop already at

1–2 months, before any major cell loss had occurred. At this early time point, Lin

et al. (2012) observed a marked downregulation of both TH, DAT, VMAT2 and

Nurr1 in the α-synuclein-overexpressing nigral neurons, similar to what has been

found in human PD (Chu et al., 2006) and in the AAV-α-synuclein model at a similar

early time point (Decressac et al., 2012a). In line with these findings, Lin et al.

detected a 70–80% reduction in baseline and evoked striatal DA release at

3–4 months. The protracted time course of SN degeneration in this model is consis-

tent with observations made in other transgenic or viral α-synuclein models (see

above) and indicates that the earliest impact of elevated levels of wild-type or

mutated α-synuclein occurs at the level of axons and presynaptic terminals (reflected

in a downregulation of the DA synthesis machinery and a reduction in striatal

DA release). These changes precede cell death and may be sufficient to cause motor

deficits. Nevertheless, caution should be exerted when attributing motor deficits to

nigrostriatal DA pathology if a transgenic model also exhibits non-PD-specific phe-

notypic features. For example, in the above-mentioned study (Lin et al., 2012), the

transgenic human α-synuclein protein was expressed not only in the midbrain but

also, at very high levels, in cerebellum and hippocampus. Moreover, compared to

their wild-type controls, the α-synuclein transgenic mice exhibited a significant

and progressive body weight reduction starting at young adult age, whose implica-

tions remain unclear.
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9 Other genetic models of PD
As already mentioned, the discovery of gene mutations associated with autosomal

recessive and autosomal dominant forms of PD has prompted the development of

a large number of transgenic rodent lines expressing PD-causing mutations [for re-

view see (Blesa and Przedborski, 2014, Creed and Goldberg, 2018, Konnova and

Swanberg, 2018, Xu et al., 2012)]. In this section, we have chosen to focus on four

well-established genetic PD models exhibiting nigrostriatal DA deficits, the En-
grailed1, Nurr1, Pitx3-Aphakia, and mitochondria-deficient “MitoPark” mouse

models. Engrailed1, Nurr1 and Pitx3 are transcription factors involved in the devel-

opment and survival of midbrain DA neurons during development. They are, how-

ever, expressed not only during development but also in adulthood, playing a role in

the maintenance and survival of mature DA neurons. The MitoPark mouse, by con-

trast, carries a genetic defect that will impair mitochondrial function and replication

selectively within midbrain DA neurons. These models are interesting and valuable

as they can replicate a PD-like progressive dopaminergic neurodegeneration; at the

same time, their usefulness to mimic the disease process is limited by the lack of

α-synuclein-related pathology.

In the heterozygous Engrailed1 (En1+/�) knock-out mouse, ablating one of the

two Engrailed1 genes induces a progressive degenerative process in nigrostriatal

DA neurons that starts at the level of axon terminals at about 4 weeks of age and

progresses over the subsequent months, resulting in a significant loss of DA neurons

at 3–5 months of age (Nordstroma et al., 2015; Sonnier et al., 2007). The magnitude

of DA neuron loss is, however, too small to induce any significant motor phenotype.

In this model, the early axonopathy/axon terminal loss followed by nigral DA neuron

degeneration is reminiscent of the disease process seen in human PD (Burke and

O’Malley, 2013; Kordower et al., 2013). Similar to the human disease, the En1+/�

mice exhibit decreased mitochondrial complex-I activity and signs of impaired

autophagy, although they lack α-synuclein aggregate formation, a hallmark of hu-

man PD. In a recent extension of the model by the Brundin group, PFFs were injected

into the striatum to induce synuclein pathology in En1+/� mice (Chatterjee et al.,

2019). In the absence of one Engrailed allele, the induction of pathological α-synu-
clein aggregates was found to be more pronounced than in wild-type mice, suggest-

ing that the mitochondrial and autophagic deficits seen in En1+/� mice may help to

accelerate the seeding and aggregation process. This combined approach thus brings

the Engrailed model one step closer to mimicking PD-like pathology.

In the Nurr1 model, one or both of the Nurr1 genes are ablated. Because homo-

zygous Nurr1 knockout (KO) mice do not survive beyond birth, Nurr1 hypomorphic

models are obtained by using either heterozygous mice lacking one allele through

life (Jiang et al., 2005) or conditional KO mice where one or both alleles are selec-

tively removed in mature DA neurons (Kadkhodaei et al., 2009, 2013). There is

evidence to suggest that Nurr1 is involved in the pathophysiology of PD. Indeed,

the expression of Nurr1 is reduced in DA neurons affected by synuclein pathology
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(Chu et al., 2006; Decressac et al., 2012a) and polymorphisms in the Nurr1 gene

point to reduced Nurr1 expression being a risk factor for the development of PD

(Grimes et al., 2006; Xu et al., 2002; Zheng et al., 2003). In line with these findings,

reduced Nurr1 expression, as seen in heterozygous Nurr1+/�mice, is associated with

a slowly developing nigrostriatal dysfunction including DA neuron loss and reduced

striatal DA levels, which becomes evident at 15–24 months of age (Jiang et al.,

2005), as well as an increased sensitivity to the DA neurotoxin MPTP (Le et al.,

1999). These changes are even more pronounced in conditional knock-out mice

where the Nurr1 gene is ablated by administering tamoxifen treatment at 5 weeks

of age. In this model, the Nurr1 target genes TH, VMAT2, and DAT are markedly

down-regulated by 4 months, and tissue DA levels are reduced by over 80% in both

striatum and nucleus accumbens at 11 months, accompanied by motor impairments

in the open field and vertical pole tests developing gradually over time (Kadkhodaei

et al., 2013). No loss of cell bodies was detected for up to 11 months after tamoxifen

administration, while TH-positive axons and dendrites developed clear signs of pa-

thology, exhibiting a swollen and fragmented morphology. This pattern of patholog-

ical changes—axon terminal degeneration and reductions in striatal DA preceding

DA neuron cell loss—suggests similarity with early stage PD. However, similarly

to the En1+/� model, Nurr1 deficient mice do not develop any signs of α-synuclein
pathology.

The Pitx3-Aphakia mouse is the best characterized and most commonly used of

the three transcription factor-related models. The expression of Pitx3 (paired-like

homeodomain transcription factor 1) is restricted to the developing eye and midbrain

DA neurons from embryonic day 11 throughout adult life (Smidt et al., 1997). Apha-

kia mice carry a spontaneous deletion at the Pitx3 locus causing microphthalmia and

aphakia (i.e., absence of the lens of the eye). Mice homozygous for this mutation

(termed ak/ak mice) exhibit an almost complete loss of DA neurons in the pars com-

pacta of the SN that is present already at birth, while DA neurons in the VTA are

relatively spared up to about 6 weeks of age. At later time points (100 days), about

50% of the VTA neurons are lost (Hwang et al., 2003; Nunes et al., 2003; van den

Munckhof et al., 2003). As a result of the marked DA cell depletion in the SN, the

motor part of the striatum is severely denervated and exhibits an over 90% reduction

in DA levels. This is associated with supersensitivity of DA receptor-mediated

signaling in striatal neurons (Hwang et al., 2005), which enables the induction of

dyskinesia by repeated L-DOPA administration (Ding et al., 2007; Suarez et al.,

2018). Differently from the dorsolateral (motor) striatum, nucleus accumbens and

ventral striatal areas exhibit only approximately 70%DA loss in adult mice (3months

old) (van den Munckhof et al., 2003). Ak/ak mice do not show any gross alterations

in motor behavior, but display clear L-DOPA-reversible defects in sensitive mea-

sures of nigrostriatal motor function, such as longer latency and shorter steps in

the beam walking test and impaired performance in the vertical pole test (Hwang

et al., 2005). Moreover, these mice show impairments in striatum-dependent cogni-

tive tests including rotarod learning, T-maze and inhibitory avoidance tasks

(Ardayfio et al., 2008). The Pitx3-Aphakia mouse has been proposed as valid model
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for PD because of its conspicuous loss of nigral DA neurons with relative sparing

of the VTA, resembling the pattern of dopaminergic degeneration in the human

disease. Nevertheless, this model has limited utility for studying PD pathogenesis

and treatments thereof, since the loss of SN DA neurons results from a develop-

mental defect as opposed to an adult degenerative process. The applications

benefiting the most from this mouse model are pathophysiological-behavioral

studies addressing the effects of severe nigrostriatal DA depletion and the associ-

ated compensatory mechanisms. Due to its bilateral phenotype, the Pitx3-Aphakia

mouse offers an interesting complement to the common, unilateral 6-OHDA

lesion models for this type of studies.

The MitoPark mouse is a conditional knock-out mouse where the gene for mito-

chondrial transcription factor A (Tfam) is disrupted selectively in DA neurons. The

TFAM protein is a regulator of mitochondrial replication and decreased levels of this

protein result in a reduction of mitochondrial DNA copy number (Ekstrand et al.,

2004), similar to what has been observed in nigral DA neurons in human PD

(Grunewald et al., 2019). In the affected DA neurons, Tfam disruption induces a re-

spiratory chain deficiency, which in turn causes a progressive degenerative pheno-

type. The dopaminergic deficiency yields a L-DOPA-responsive motor impairment

that is first observed at around 12–15 weeks of age, accompanied by a gradual loss

of DA neurons in both SN and VTA, which reaches about 80–90% at 10 months of

age (Ekstrand et al., 2007). Prior to the onset of cell loss these mice show a presymp-

tomatic impairment in striatal DA release (Good et al., 2011) and also changes in

somatodendritic morphology in DA neurons (Lynch et al., 2018). The protracted

time-course of degenerative changes, leading to a near-complete loss of midbrain

DA neurons within a reasonable time span, is an attractive feature of the MitoPark

mouse. Mitochondrial dysfunction is a characteristic feature of human PD and the

MitoPark mouse provides a highly useful model for this aspect of the disease.

10 Concluding remarks
During the past decades, an increased understanding of pathological features, genetic

and environmental factors underlying PD has prompted the development of a vast

and diversified repertoire of animal models. Today we have unprecedented oppor-

tunities to recreate and study virtually all critical aspects of PD pathogenesis in lab-

oratory animals. This is a very active research field in continuous communication

with other research disciplines, in particular, molecular genetics, protein biochem-

istry, pharmacology, physiology, and comparative anatomy. In spite of the criti-

cism often raised on the validity of animal models, there is no question that

disease models in adult living organisms will continue to be indispensable for many

fundamental applications. Although no single animal model replicates all patho-

genic and clinical features of PD, the range of rodent models available today offers

opportunities to reproduce specific disease features within a tightly controlled in

vivo system. If carefully chosen and correctly applied, animal models are requisite
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for scientific progress and invaluable for the exploration and development of novel

therapeutic ideas. To this end, selecting the most suitable model for the questions

under study is essential, and a continuous, bidirectional dialogue between exper-

imentalists and clinical researchers is of vital importance.
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